Printed Page		ject Code:-	BAS0201	BZ			
	ROI	1. No:					
MOIDA		TECHNOL			NOI		
NOIDA	A INSTITUTE OF ENGINEERING AND (An Autonomous Institute Affiliat				(NOI	DA	
	B.Tech	ica to micro	J, Luckiic	, , ,			
	SEM: II - THEORY EXAMINA	ATION (202	4 - 2025)				
	Subject: Engineering	ng Physics					
Time: 3 Ho				Ma	ax. Ma	ırks:	100
General Instr						. a.l. a.	4.0
	that you have received the question paper stion paper comprises of three Sections -A						ic.
	MCQ's) & Subjective type questions.	, <i>D</i> , & C. 11	consists o	, munip	e Cho	ice	
	n marks for each question are indicated on	right -hand	d side of e	ach ques	tion.		
	your answers with neat sketches wherever	_	· ·	•			
	uitable data if necessary.						
	y, write the answers in sequential order.	C 1.1	7 7				
6. No sheet stevaluated/ch	should be left blank. Any written material	after a blan	k sheet wi	ll not be			
evanaaiea/cn	иескей.						
SECTION-A	A						20
1. Attempt al							
1-a. A 1	frame of reference has four coordinates, x	x, y, z, and t	is referre	d to as th	ie:		1
	CO1, K1)						
(a)	Inertial frame of reference						
(b)	Non-inertial frame of reference						
(c)	Four-dimensional plane						
(d)	Space-time reference						
1-b. Wł	Thich basic law is used for the derivation of	of mass varia	ation with	velocity	? (CO	1,	1
K1				•	`	Í	
(a)	Law of conservation of Energy						
(b)	Law of conservation of Kinetic Energy						
(c)	Law of conservation of Momentum						
(d)	Law of conservation of mass						
1-c. No	ormalized Wave function must be (CO2,K	(1)					1
(a)	Single valued						
(b)	Multi valued						
(c)	Both single and multi valued						
(d)	Complex						
	elation Between group velocity and phase	velocity is:	(CO2,K1	.)			1
(a)	$v_{p} = c^{2}v_{g}$	•	•				

	(b)	$v_P v_g = c^2$	
	(c)	$v_p = v_g$	
	(d)	$v_g = c^2 v_p$	
1-e.	In	the diffraction pattern due to single slit, the width of the central maximum will	1
		e (CO3, K1)	
	(a)	Greater for a narrow slit Less for a narrow slit	
	(b)		
	(c)	Greater for a broad slit	
1 C	(d)	Less for a broad slit	1
1-f.		Newtons Ring experiments, the diameter of dark rings is proportional to: CO3,K1)	1
	(a)	Odd Natural numbers	
	(b)	Natural Number	
	(c)	Even Natural Number	
	(d)	Square root of natural number	
1-g.		he group of points arranged in regular fashion in three dimensions is called: CO4, K1)	1
	(a)	Crystalline	
	(b)	Amorphous	
	(c)	Non-crystalline	
	(d)	None of these	
1-h.		o-ordination number in case of Simple cubic structure is (CO4,	1
	(a)	12	
	(b)	6	
	(c)	2	
	(d)	8	
1-i.		uckyball is a cluster of (CO5, K1)	1
	(a)	15 carbon atoms	
	(b)	30 carbon atoms	
	(c)	45 carbon atoms	
	(d)	60 carbon atoms	
1-j.		he cooper pairs can maintain their coupled motion to a certain distance, which is nown as: (CO5, K1)	1
	(a)	Cooper length	
	(b)	Critical length	
	(c)	Coherence length	
	(d)	Penetration depth	

2. Attem	pt all parts:-	
2.a.	Is earth an inertial or non inertial frame of reference? Explain. (CO 1,K1)	2
2.b.	Distinguish between phase velocity and group velocity. (CO2, K1)	2
2.c.	Two independent sources could not produce interference, why?(CO3,K1)	2
2.d.	What is a unit cell? Explain with example. (CO4, K2)	2
2.e.	Draw the graph for temperature dependence of resistivity in case of superconductors. (CO5, K2)	2
SECTIO	0N-B	30
3. Answe	er any <u>five</u> of the following:-	
3-a.	Show that $x^2+y^2+z^2=c^2t^2$ is invariant under Lorentz transformation equations. (CO1,K3)	6
3-b.	At what speed the mass of a object will be double of its value at rest.(CO1,K3)	6
3-c.	Calculate the energy difference between the ground state and first excited state for electron in one dimensional rigid box of length 10 ⁻⁸ cm. (CO2, K3)	6
3-d.	Calculate the smallest possible uncertainty in the position of an electron moving with velocity 3×10^7 m/s. (CO2, K3)	6
3.e.	Light of wavelength 5890Å is reflected at nearly normal incidence from a soap film of refractive index is 1.40. What is the least thickness of the film that will appear (i) dark (ii) bright? (CO3,K3)	6
3.f.	Copper has an FCC structure and its atomic radius is 1.278 Å. Calculate its density. (CO4, K3)	6
3.g.	Transition temperature for lead is 7.26 K. The maximum critical field for the material is $8x10^5$ A/m. Lead has to be used as a superconductor subjected to a magnetic field of $4x10^4$ A/m. What precaution will have to be taken? (CO5, K3)	6
SECTIO	<u>N-C</u>	50
4. Answe	er any <u>one</u> of the following:-	
4-a.	State the postulates of special theory of relativity. Deduce Lorentz transformation equations. (CO1, K2)	10
4-b.	Why does mass of a body vary with velocity? Derive an expression to prove your statement. (CO1,K2)	10
5. Answe	er any <u>one</u> of the following:-	
5-a.	Derive an expression for the normalised wave function of a particle confined in one dimensional box. (CO2,K2)	10
5-b.	What is uncertainty principle? Write any two applications of uncertainty principle. (CO2, K2)	10
6. Answe	er any <u>one</u> of the following:-	
6-a.	Describe and explain the formation of Newtons rings in reflected monochromatic light. Obtain the conditions for bright and dark fringe.(CO3,K2)	10
6 h	Explain the difference between Fresnel and Fraunhoffer diffraction. Obtain the	10

intensities of diffraction pattern in Fraunhoffer diffraction due to single slit. (CO3, K3)

- 7. Answer any one of the following:-
- 7-a. Describe the crystal structure of NaCl crystal. Explain with diagram that the lattice 10 is fcc but its coordination number is that of simple cubic lattice? (CO4, K4)
- 7-b. What are Miller indices? How are they determined? Give example. (CO4, K3)
- 8. Answer any one of the following:-
- 8-a. Describe structure and applications of Buckyballs. How they are synthesized. (CO5, K2)
- 8-b. Distinguish between type I and type II superconductors based on critical field. 10 Explain the application of superconductivity in maglev vehicles. (CO5, K2)

